Predicting weather radar data using an ensemble of neural network models

Andrei Mihai Babeş-Bolyai University

WeADL 2024 Workshop

The workshop is organized by the Machine Learning research group (www.cs.ubbcluj.ro/ml) and the Romanian Meteorological Administration (https://www.meteoromania.ro/)

Machine Learning Research Group

MLyRE

- **Definition** (usually): weather forecast for the next 0 to 6 hours.
- The work presented here regards short time spans
 - less than 1 hour
- Data used: radar data
 - inputs are radar data
 - outputs are radar data (predictions on future radar data)

Radar Data - from Romanian National Meteorological Administration (NMA)

- Data collected over central Romania
- Single polarization 458 S-band Weather Surveillance Radar 98 Doppler (WSR-98D)
 - $\bullet\,$ Full volume scan (all elevations, all products) every ~ 5.5 minutes
- For our work we used the Reflectivity product on 6 elevations
 - expressed in decibels relative to the reflectivity factor Z (dBZ)

Base Reflectivity product (R) suggests

- location, intensity and type of precipitation
- storm structure and size
- distribution of water particles

Dataset

- Data collected from 2020, 2021 and 2022
 - manually curated by meteorologists
- data set contains 264 days
 - 67,922 time steps
 - ~ 257 timesteps per day
- area of 230 km radius around the radar site
- Data represented as 460x460 data grid
 - for each time step
 - for each elevation

Data representation

• An instance is represented by the data grid containing all the data at a time moment – a 460x460 grid for every elevation

Figure: A sample data grid for a timestep.

Data Representation 2

Figure: Data representation in time.

...

SepConv-ens model – prediction goal

Figure: High-level overview of what the model does.

SepConv-ens model – the 3 base models

Base Model 1 (Bm1) T-3 T-2 T+1 T-1 Predicted data Real data Base Model 3 (Bm3) T+3 T-3 T-2 T-1 Real data Predicted data Base Model 5 (Bm5) T+5 T-3 T-2 T-1 Predicted data

Figure: The base models that are part of SepConv-ens.

Real data

SepConv-ens model – base models architecture

Figure: The neural network architecture of the base models.

9/18

SepConv-ens model - combining the models 1

Figure: How predictions are made for T+1, T+2, T+3 and T+4.

SepConv-ens model - combining the models 2

Figure: How predictions are made for T+5, T+6, T+7 and T+8.

Training, testing and validation datasets

- Dataset split into: 10% testing, 10% validation, 80% training
- All 3 base models were trained with the same datasets
- The split was done on a day by day basis:
 - each day was split into 4 equal parts (\sim 6 hours each)
 - each part was split into training/validation/testing
 - each datasets was made up by concatenating the smaller parts.

Figure: How data for 1 day is split into different datasets.

Performance evaluation – metrics

- Regression metrics:
 - Root mean squared error (RMSE)
 - R^2 score: a statistical measure of how well the predicted values approximate the real observation
- Classification metrics:
 - Probability of Detection $POD = \frac{TP}{TP+FN}$
 - False Alarm Ratio $FAR = \frac{FP}{FP+TP}$
 - Critical Success Index $CSI = \frac{TP}{TP+FN+FP}$
 - Heidke Skill Score (HSS) $HSS = \frac{2 \cdot (TP \cdot TN FP \cdot FN)}{(TP + FN) \cdot (FN + TN) + (TP + FP) \cdot (FP + TN)}$
- Image processing metrics:
 - VIF (Visual Information Fidelity) quantifies the visual quality of images
 - *F_{cbc}* (*Index for the cell-by-cell comparison*) the ratio of cells in the prediction that match with the corresponding cell in the real data

Result

Lead	Regression metrics					Clas	sification	metrics	Image processing metrics				
time	$RMSE(\downarrow)$		$R^2(\uparrow)$		τ	POD (↑)	FAR (\downarrow)	CSI (†)	$HSS(\uparrow)$	$VIF(\uparrow)$		$F_{cbc}(\uparrow)$	
	All	Non-zero	All	Non-zero						All	Non-zero	All	Non-zero
6 min					10	0.604	0.066	0.580	0.729				
(1 step)	0.963	7.000	0.446	0.324	20	0.439	0.076	0.424	0.593	0.103	0.120	0.971	0.114
					40	0.249	0.386	0.215	0.354				
18 min					10	0.503	0.109	0.474	0.637				
(3 steps)	1.927	10.31	0.094	0.396	20	0.336	0.122	0.321	0.484	0.014	0.013	0.955	0.049
					40	0.082	0.572	0.074	0.137				
30 min					10	0.434	0.129	0.537	0.480				
(5 steps)	1.838	10.17	0.094	0.496	20	0.249	0.129	0.240	0.384	0.012	0.011	0.955	0.046
					40	0.040	0.528	0.038	0.074				
48 min					10	0.249	0.234	0.232	0.369				
(8 steps)	1.532	9.722	0.190	0.539	20	0.084	0.275	0.082	0.149	0.016	0.014	0.963	0.047
					40	0.006	0.875	0.006	0.011				

Table: Experimental results for SepConv-ens.

Results 2

Experiment	Model	Regression metrics				C	lassificatio		Image processing metrics				
		$RMSE(\downarrow)$		$R^{2}(\uparrow)$		POD (↑)	FAR (\downarrow)	$CSI(\uparrow)$	$HSS(\uparrow)$	$VIF(\uparrow)$		$F_{cbc}(\uparrow)$	
		All	Non-zero	All	Non-zero					All	Non-zero	All	Non-zero
E1 - prediction	M1	1.927	10.31	0.094	0.396	0.071	0.839	0.052	0.097	0.014	0.013	0.955	0.049
at <i>t</i> + 3	SepConv-ens	1.149	7.874	0.353	0.674	0.245	0.293	0.222	0.363	0.054	0.058	0.968	0.086
E2 - prediction	M2	1.838	10.17	0.094	0.496	0.033	0.815	0.029	0.055	0.012	0.011	0.955	0.046
at t + 5	SepConv-ens	1.455	9.221	0.219	0.591	0.055	0.385	0.053	0.101	0.021	0.018	0.964	0.054
E3 - prediction	M3	1.854	10.248	0.090	0.516	0.004	0.618	0.004	0.007	0.011	0.010	0.952	0.057
at t + 8	SepConv-ens	1.532	9.722	0.190	0.539	0.033	0.540	0.032	0.062	0.016	0.014	0.963	0.047

Table: Comparisons with other combinations.

Visualization

Figure: A visualisation of the SepConv-ens predictions for a sample time step.

Visualization 2

Figure: The images depict a comparison of the actual composite reflectivity, derived from data captured by the Bobohalma weather radar (shown in the left panel), and the predicted composite reflectivity generated by SepConv-ens model (the right panel).

Thank you! Questions?